PACCMOTPEHO

на заседании МО учителей физико-математических наук Протокол № 1 от 30.08.2018

Председатель МО

Темпени Е.Н. Романенко

ПРОВЕРЕНО

01.09.2018 Заместитель директора (НМР)

Усу - Н.С. Григорьева

УТВЕРЖДЕНО

приказом МБОУ Шкода,№ 36 г.о. Самара от 01.09.2018 № 217 vв

Дироктор СА. Чикановская

Рабочая программа

учебного предмета (курса) «Физика»

название предмета, курса

уровень реализации образовательных программ: базовый

для 10-11 классов

Составители:

Рябченко Татьяна Анатольевна

Широкова Наталья Витальевна

Пояснительная записка

Рабочая программа по физике в 10 - 11 классе составлена в соответствии с государственным образовательным стандартом. Авторы программы В.С.Данюшенков, О.В.Коршунов. (Программы общеобразовательных учреждений. Москва. Просвещение.2011).

Программа соответствует комплекту учебников:

Физика 10 класс Учебник для общеобразовательных организаций: базовый и профильный уровни / Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.: под ред. Николаева В.И., Парфентьевой Н.А. – М.: Просвещение, 2014

Физика 11 класс Учебник для общеобраз.органинизаций: базовый и профильный уровни / Мякишев Г.Я., Буховцев Б.Б., ЧаругинВ.М..: под ред.., Парфентьевой Н.А. – М.: Просвещение, 2014

Цели и задачи изучения физики

Цели изучения физики в 10-11 классах на базовом уровне:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; о методах научного познания природы;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ, практического использования физических знаний;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественно-научной информации;
- воспитание убеждённости в необходимости познания законов природы и использования достижений физики на благо развития человеческой цивилизации; сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания; готовности к моральноэтической оценке использования научных достижений, а также чувства ответственности за охрану окружающей среды;
- использование приобретённых знаний и умений для решения практических задач повседневной жизни и обеспечения безопасности собственной жизни.

Планируемые предметные результаты

Знать:

- фундаментальные физические законы и принципы, лежащие в основе современной физической картины мира;
- наиболее важные открытия в области физики, оказавшие определяющее влияние на развитие техники и технологии;
- методы научного познания природы;

Уметь:

- проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ;
- практически использовать физические знания;
- оценивать достоверность естественнонаучной информации;

Развить:

• познавательные интересы, интеллектуальные и творческие способности в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;

Воспитать:

убежденность в возможности познания законов природы; использование достижений физики на благо развития человеческой цивилизации; необходимость сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовность к морально-этической оценке использования научных достижений, чувство ответственности за защиту окружающей среды;

Использовать приобретенные знания и умения для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Содержание учебного предмета

10 класс

Механика (16 ч)

Основные особенности физического метода исследования. Физика и познание мира.

Основные понятия кинематики

Скорость. Равномерное прямолинейное движение.

Относительность механического движения. Принцип относительности в механике.

Аналитическое описание равноускоренного прямолинейного движения (РУПД)

Свободное падение тел - частный случай РУПД

Равномерное движение точки по окружности (РДО)

Масса и сила. Законы Ньютона, их экспериментальное подтверждение

Силы в механике. Гравитационные силы

Силы упругости—силы электромагнитной природы

Силы трения.

Закон сохранения импульса

Законы сохранения в механике (7 ч)

Реактивное движение

Работа силы. (Механическая работа) Потенциальная и кинетическая энергия.

Закон сохранения энергии в механике

Молекулярная физика. Термодинамика (21 ч)

Основные положения молекулярно-кинетической теории (МКТ) и их опытное обоснование.

Идеальный газ. Основное уравнение МКТ идеального газа.

Температура.

Уравнение состояния идеального газа (уравнение Менделеева-Клапейона)

Газовые законы

Взаимные превращения жидкостей и газов. Твёрдые тела (4 ч)

Реальный газ. Воздух. Пар.

Жидкое состояние вещества. Свойства поверхности жидкости.

Твердое состояние вещества.

Термодинамика как фундаментальная физическая теория.

Работа в термодинамике.

Теплопередача. Количество теплоты.

Первый закон термодинамики (начало)

Необратимость процессов в природе. Второй закон термодинамики.

Тепловые двигатели и охрана окружающей среды.

Электродинамика (8 ч)

Введение в электродинамику. Электростатика. Электродинамика как фундаментальная физическая теория.

Закон Кулона

Электрическое поле. Напряженность. Идея близкодействия.

Проводники и диэлектрики в электрическом поле

Энергетические характеристики электростатического поля

Конденсаторы. Энергия заряженного конденсатора.

Постоянный электрический ток (7 ч)

Стационарное электрическое поле

Схемы электрических цепей. Решение задач на закон Ома для участка цепи.

Решение задач на расчет электрических цепей

Работа и мощность постоянного тока.

Электродвижущая сила. Закон Ома для полной цепи

Электрический ток в различных средах (6 ч)

Электрический ток в металлах

Закономерности протекания электрического тока в полупроводниках

Закономерности протекания тока в вакууме

Закономерности протекания тока в проводящих жидкостях

Повторение (3 ч)

11 класс

1. Электродинамика (продолжение) (11 ч)

Магнитное поле. Плазма. Взаимодействие токов. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Явление электромагнитной индукции. Правило Ленца. Магнитный поток. Закон электромагнитной индукции. Взаимосвязь электрического И магнитного полей. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитное поле.

Фронтальные лабораторные работы

- 1. Наблюдение действия магнитного поля на ток.
- 2. Изучение явления электромагнитной индукции.

2. Оптика. Световые волны. Излучение и спектры. (9 ч)

Световые лучи. Закон преломления света. Полное внутреннее отражение. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Оптические приборы. Светоэлектромагнитные волны. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Фронтальные лабораторные работы

- 4. Измерение показателя преломления стекла.
- 5. Определение оптической силы и фокусного расстояния собирающей линзы.
- 6. Измерение длины световой волны.

3. Квантовая физика (8 ч)

Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.

Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. *Соотношение неопределенностей Гейзенберга*. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.

4. Элементы астрофизики (5ч)

Строение Солнечной системы. Система Земля—Луна. Солнце — ближайшая к нам звезда. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца, звезд, галактик. Применимость законов физики для объяснения природы космических объектов. Пространственные масштабы наблюдаемой Вселенной.

5.Обобщающее повторение — (1 ч)

Учебно-тематический план

10 класс

№ п/п	Наименование раздела	Всего часов	В.ч	P.p	П.р.	Л.р	К.р
1	Механика	8				1	1
2	Законы сохранения в механике	4				1	1
3	Молекулярная физика. Термодинамика.	10				1	2
4	Электродинамика	4					1
5	Постоянный электрический ток	4				2	

6	Электрический ток в различных средах	4			1
	ИТОГО	34		5	6

11 класс

№ п/п	Наименование раздела	Всего часов	В.ч	P.p	П.р.	Л.р	К.р
1	Магнитное поле	5				1	
2	Электромагнитная индукция	6				1	1
3	Электромагнитные колебания	9					
4	Электромагнитные волны	2					
5	Геометрическая оптика	8				2	
6	Волновая оптика	7				1	1
7	Излучение и спектры	3				1	
8	Квантовая физика	11					
9	Астрономия	3					
10	Повторение	14					
	ИТОГО	68				6	2

№	урока	Кол-во часов раздела	Тема	Учебная неделя						
	10 класс									
	Механика (8 ч)									
1		1	Введение. Основные особенности физического метода исследования. Физика и познание мира. Основные понятия кинематики.	1						
2		2	Скорость. Равномерное прямолинейное движение. Относительность механического движения. Принцип относительности в механике.	2						
3		3	Аналитическое описание равноускоренного прямолинейного движения (РУПД). Свободное падение тел - частный случай РУПД	3						
4		4	Равномерное движение точки по окружности (РДО). Зачет по теме «Кинематика»	4						
5		5	Масса и сила. Законы Ньютона, их экспериментальное подтверждение. Решение задач на законы Ньютона	5						
6		6	Силы в механике. Гравитационные силы. Решение задач по теме: «Гравитационные силы. Вес тела»	6						
7		7	Силы упругости—силы электромагнитной природы. Лабораторная работа № 1«Изучение движения тела по окружности под действием силы упругости и тяжести».	7						
8		8	Зачет по теме: «Динамика.Силы 1 в природе»	8						
			Законы сохранения в механике (4 ч)							
9		1	Закон сохранения импульса. Реактивное движение	9						

10	2	Работа силы. (Механическая работа). Потенциальная и кинетическая энергия. Теорема об изменении кинетической и потенциальной энергии	10
11	3	Закон сохранения энергии в механике. Лабораторная работа № 2«Экспериментальное изучение закона сохранения механической энергии».	11
12	4	Зачет по теме «Законы сохранения в механике».	12
	"	Молекулярная физика. Термодинамика. (10 ч)	
13	1	Основные положения молекулярно-кинетической теории (МКТ) и их опытное обоснование.	13
14	2	Идеальный газ. Основное уравнение МКТ идеального газа. Температура.	14
15	3	Уравнение состояния идеального газа(уравнение Менделеева- Клапейона). Газовые законы.	15
16	4	Лабораторная работа № 3:«Опытная проверка закона Гей-Люссака».	16
17	5	Зачет по теме: «Основы МКТ идеального газа».	17
18	6	Реальный газ. Воздух. Пар.Жидкое состояние вещества. Свойства поверхности жидкости.	18
19	7	Твердое состояние вещества.	19
20	8	Термодинамика как фундаментальная физическая теория.Работа в термодинамике.	20

21	9	Теплопередача. Количество теплоты.Первый закон термодинамики (начало). Необратимость процессов в природе. Второй закон термодинамики.	21
22	10	Тепловые двигатели и охрана окружающей среды.Зачет по теме: «Термодинамика».	22
		Электродинамика (4 ч)	
23	1	Введение в электродинамику. Электростатика. Электродинамика как фундаментальная физическая теория.Закон Кулона	23
24	2	Электрическое поле. Напряженность. Идея близкодействия. Решение задач на расчет напряженности электрического поля и принцип суперпозиции.	24
25	3	Проводники и диэлектрики в электрическом поле. Энергетические характеристики электростатического поля	25
26	4	Конденсаторы. Энергия заряженного конденсатора.Зачет по теме «Электростатика».	26
		Постоянный электрический ток (4 ч)	
27	1	Стационарное электрическое поле. Схемы электрических цепей. Решение задач на закон Ома для участка цепи.	27
28	2	Лабораторная работа №4«Изучение последовательного и параллельного соединения проводников»	28
29	3	Работа и мощность постоянного тока. Электродвижущая сила. Закон Ома для полной цепи	29
30	4	Лабораторная работа №5«Определение ЭДС и внутреннего сопротивления источника тока»	30
		Электрический ток в различных средах (3 ч)	

31	1	Электрический ток в металлах. Закономерности протекания электрического тока в полупроводниках	31
32	2	Закономерности протекания тока в вакууме. Закономерности протекания тока в проводящих жидкостях	32
33	3	Зачет по теме «Электрический ток в различных средах.	33
34		Повторение (1 ч)	34

Календарно-тематическое планирование

по физике на 11 класс

№	Название раздела/количество	No		Учебная
урока п/п	часов	урока в разделе	Тема урока	неделя
1	Магнитное поле – 5 ч	1	Взаимодействие токов. Лабораторная работа №1. «Наблюдение действия магнитного поля на ток».	1
2		2	Вектор магнитной индукции. Линии магнитной индукции	1
3		3	Сила Ампера	2
4		4	Сила Лоренца	2
5		5	Решение задач по теме «Магнитное поле».	3
6	Электромагнитная индукция – 6 ч	1	Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции.	3
7		2	Направление индукционного тока. Правило Ленца.	4
8		3	Самоиндукция. Индуктивность.	4
9		4	Лабораторная работа №2. «Изучение явления электромагнитной индукции».	5
10		5	Электромагнитное поле.	5

11		6	Контрольная работа №1. «Магнитное поле. Электромагнитная индукция».	6
12	Электромагнитные колебания – 9 ч	1	Свободные и вынужденные электромагнитные колебания.	6
13		2	Колебательный контур. Превращение энергии при электромагнитных колебаниях.	7
14		3	Переменный электрический ток.	7
15		4	Активное сопротивление. Действующее значение силы тока и напряжения	8
16		5	Конденсатор в цепи переменного тока.	8
17		6	Катушка индуктивности в цепи переменного тока	9
18		7	Производство, передача и использование электрической энергии	9
19		8	Решение задач по теме «Электромагнитные колебания»	10
20		9	Решение задач по теме «Электромагнитные колебания»	10
21	Электромагнитные волны – 2 ч	1	Экспериментальное обнаружение электромагнитных волн.	11
22		2	Принципы радиосвязи. Понятие о телевидении. Развитие средств связи	11
23	Геометрическая оптика – 8 ч	1	Скорость света. Принцип Гюйгенс. Закон отражения света.	12

24		2	Закон преломления света. Полное отражение	12
25		3	Решение задач на законы отражения и преломления света.	13
26		4	Лабораторная работа №3 «Измерение показателя преломления стекла»	13
27		5	Линзы. Построение изображения в линзах.	14
28		6	Формула тонкой линзы. Увеличение линзы	14
29		7	Лабораторная работа №4 «Определение оптической силы и фокусного расстояния собирающей линзы»	15
30		8	Решение задач по теме «Геометрическая оптика»	15
31	Волновая оптика – 7 ч	1	Дисперсия света	16
32		2	Интерференция света	16
33		3	Дифракция света. Дифракционная решетка	17
34		4	Лабораторная работа №5 «Измерение длины световой волны»	17
35		5	Решение задач по теме «Волновая оптика»	18
36		6	Решение задач по теме «Волновая оптика»	18
37		7	Контрольная работа по теме «Оптика»	19
38	Излучение и спектры – 3 ч	1	Виды излучений. Источники света.	19
39		2	Виды спектров. Спектральный анализ.	20

40		3	Лабораторная работа №6 «Наблюдение сплошного и линейчатого спектра»	20
41	Квантовая физика – 11 ч	1	Фотоэффект. Теория фотоэффекта.	21
42		2	Решение задач по теме «Фотоэффект»	21
43		3	Решение задач по теме «Фотоэффект»	22
44		4	Строение атома. Опыты Резерфорда.	22
45		5	Постулаты Бора.	23
46		6	Решение задач по теме «Атомная физика»	23
47		7	Открытие радиоактивности. Виды излучений. Радиоактивные превращения.	24
48		8	Закон радиоактивного распада. Период полураспада	24
49		9	Строение ядра. Ядерные силы. Энергия связи в ядре.	25
50		10	Ядерные реакции. Деление урана. Цепные реакции.	25
51		11	Решение задач на закон радиоактивного распада и ядерные реакции.	26
52	Астрономия – 3 ч	1	Солнечная система. Законы движения планет	26
53		2	Солнце	27
54		3	Млечный путь	27
55	Повторение – 14 ч	1	Кинематика материальной точки.	28

56	2	Динамика материальной точки.	28
57	3	Законы сохранения	29
58	4	Динамика периодического движения	29
59	5	Релятивистская механика	30
60	6	Статика	30
61	7	Молекулярно-кинетическая теория идеального газа.	31
62	8	Термодинамика	31
63	9	Жидкость и пар	32
64	10	Твердое тело	32
65	11	Механические и звуковые волны. Задачи в тетради	33
66	12	Силы электромагнитного взаимодействия неподвижных зарядов.	33
67	13	Энергия электромагнитного взаимодействия неподвижных зарядов.	34
68	14	Решение задач	34