МБОУ Школа №36 г.о. Самара

Аннотация к рабочей программе по учебному предмету «Математика» (среднее общее образование, 10-11 класс, углубленный уровень)

Рабочая программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования, в соответствии со следующими документами:

- 1. Федеральный закон «Об образовании в РФ» №273-ФЗ от 29.12.2012.
- Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации №1576 от 31.12.2015.
- 3. Федеральный перечень учебников, рекомендованных министерством образования и науки Российской федерации к использованию в образовательном процессе в общеобразовательном учреждении на 2021-22 уч. Год.
- 4. Программы.
- Алгебра и начала математического анализа. Сборник примерных рабочих программ 10-11 классы: учеб. пособие для общеобразоват. организаций: базовый и углубленный уровни / сост. Т.А. Бурмистрова/.-Москва.: Просвещение, 2020.
- Геометрия. Сборник примерных рабочих программ 10-11 классы: учеб. пособие для общеобразоват. организаций: базовый и углубленный уровни / сост. Т.А. Бурмистрова/.-Москва.: Просвещение, 2020.

Программа обеспечена УМК:

- Алгебра и начала математического анализа. 10 класс: учебник для общеобразоват. организаций: базовый и углубл. уровни / [Колягин Ю.М., Ткачева М.В., Федорова Н.Е., Шабунин М.И.]. М.: Просвещение, 2016.
- Алгебра и начала математического анализа. 11 класс: учебник для общеобразоват. организаций: базовый и углубл. уровни /[Колягин Ю.М., Ткачева М.В., Федорова Н.Е., Шабунин М.И.].— М.: Просвещение, 2016.
- Геометрия. 10-11 класс: учебник для общеобразовательных организаций: базовый и угл. Уровни / Атанасян Л. С. Бутузов В. Ф., Кадомцев С. Б. и др.-М.: Просвещение, 2016.

Цели и задачи реализации основной образовательной программы среднего общего образования

Целями реализации основной образовательной программы среднего общего образования являются:

- становление и развитие личности обучающегося в ее самобытности и уникальности, осознание собственной индивидуальности, появление жизненных планов, готовность к самоопределению;
- достижение выпускниками планируемых результатов: определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося старшего школьного возраста, индивидуальной образовательной траекторией его развития и состоянием здоровья.

Достижение поставленных целей при разработке и реализации образовательной организацией основной образовательной программы среднего общего образования предусматривает решение следующих

основных задач:

- формирование российской гражданской идентичности обучающихся;
- сохранение и развитие культурного разнообразия и языкового наследия многонационального народа Российской Федерации, реализация права на изучение родного языка, овладение духовными ценностями и культурой многонационального народа России;
- обеспечение равных возможностей получения качественного среднего общего образования;
- обеспечение достижения обучающимися образовательных результатов в соответствии с требованиями, установленными Федеральным государственным образовательным стандартом среднего общего образования (далее ФГОС СОО);
- обеспечение реализации бесплатного образования на уровне среднего общего образования в объеме основной образовательной программы, предусматривающей изучение обязательных учебных предметов, входящих в учебный план (учебных предметов по выбору из обязательных предметных областей, дополнительных учебных предметов, курсов по выбору и общих для включения во все учебные планы учебных предметов, в том числе на углубленном уровне), а также внеурочную деятельность;
- установление требований к воспитанию и социализации обучающихся, их самоидентификации посредством личностно и общественно значимой деятельности, социального и гражданского становления, осознанного выбора профессии, понимание значения профессиональной деятельности для человека и общества, в том числе через реализацию образовательных программ, входящих в основную образовательную программу;

- обеспечение преемственности основных образовательных программ начального общего, основного общего, среднего общего, профессионального образования;
- развитие государственно-общественного управления в образовании;
- формирование основ оценки результатов освоения обучающимися основной образовательной программы, деятельности педагогических работников, организаций, осуществляющих образовательную деятельность;
- создание условий для развития и самореализации обучающихся, для формирования здорового, безопасного и экологически целесообразного образа жизни обучающихся.

Изучение алгебры и начал математического анализа в старшей школе даёт возможность достижения обучающимися следующих результатов.

Личностные:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 2) готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие целии сотрудничать для их достижения;
- 3) навыки сотрудничества со сверстниками, детьми младшеговозраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 4) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условиюуспешной профессиональной и общественной деятельности;
- 5) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
- 6) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношениек профессиональной деятельности как возможности участияв решении личных, общественных, государственных, обще национальных проблем.

Метапредметные:

1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения

поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

- 2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции другихучастников деятельности, эффективно разрешать конфликты;
- 3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4) готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критическиоценивать и интерпретировать информацию, получаемую изразличных источников;
- 5) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задачс соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 6) владение языковыми средствами умение ясно, логичнои точно излагать свою точку зрения, использовать адекватные языковые средства;
- 7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, ихрезультатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

В соответствии с принятой Концепцией развития математического образования в Российской Федерации, математическое образование решает, в частности, следующие ключевые задачи:

- «предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе»;
- «обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.»;

• «в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования».

Соответственно, выделяются три направления требований к результатам математического образования:

- 1. практико-ориентированное математическое образование (математика для жизни);
- 2. математика для использования в профессии;
- 3. творческое направление, на которое нацелены те обучающиеся, которые планируют заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

Эти направления реализуются в двух блоках требований к результатам математического образования.

На базовом уровне:

- Выпускник **научится** в 10–11-м классах: для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.
- Выпускник получит возможность научиться в 10–11-м классах: для развития мышления, использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.

На углубленном уровне:

- Выпускник научится в 10–11-м классах: для успешного продолжения образования по специальностям, связанным с прикладным использованием математики.
- Выпускник **получит возможность научиться** в 10–11-м классах: для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук.

Цели освоения программы базового уровня — обеспечение возможности использования математических знаний и умений в повседневной жизни и возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.

Программа по математике на базовом уровне предназначена для обучающихся средней школы, не испытывавших серьезных затруднений напредыдущего уровня обучения.

Обучающиеся, осуществляющие обучение на базовом уровне, должны освоить общие математические умения, необходимые для жизни в современном обществе; вместе с тем они получают возможность изучить предмет глубже, с тем чтобы в дальнейшем при необходимости изучать математику для профессионального применения.

При изучении математики на углубленном уроне предъявляются требования, соответствующие направлению «математика для профессиональной деятельности»; вместе с тем выпускник получает возможность изучить математику на гораздо более высоком уровне, что создаст фундамент для дальнейшего серьезного изучения математики в вузе.

Углубленный уровень

Алгебра и начала анализа

Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробнорациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу, смеси и сплавы с помощью линейных, квадратных и дробно-рациональных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности. Графическое решение уравнений и неравенств. Использование операций над множествами и высказываниями. Использование неравенств и систем неравенств с одной переменной, числовых промежутков, их объединений и пересечений. Применение при решении задач свойств арифметической и геометрической прогрессии, суммирования бесконечной сходящейся геометрической прогрессии.

Множества (числовые, геометрических фигур). Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множество. Способы задания множеств Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами. Круги Эйлера. Конечные и бесконечные, счетные и несчетные множества.

Истинные и ложные высказывания, операции над высказываниями. Алгебра высказываний. Связь высказываний с множествами. Кванторы существования и всеобщности.

Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера, основных логических правил.

Умозаключения. Обоснования и доказательство в математике. Теоремы. Виды математических утверждений. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному данному. Признак и свойство, необходимые и достаточные условия.

Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. q-ичные системы счисления. Функция Эйлера, число и сумма делителей натурального числа.

Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот.

Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период. Четные и нечетные функции. Функции «дробная часть числа» и «целая часть числа».

Тригонометрические функции числового аргумента. Свойства и графики тригонометрических функций.

Обратные тригонометрические функции, их главные значения, свойства и графики. Тригонометрические уравнения. Однородные тригонометрические уравнения. Решение простейших тригонометрических неравенств. Простейшие системы тригонометрических уравнений.

Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график.

Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график. Иррациональные уравнения.

Первичные представления о множестве комплексных чисел. Действия с комплексными числами. Комплексно сопряженные числа. Модуль и аргумент числа. Тригонометрическая форма комплексного числа. Решение уравнений в комплексных числах.

Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг, умножение на число, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических и иррациональных неравенств.

Взаимно обратные функции. Графики взаимно обратных функций.

Уравнения, системы уравнений с параметром.

Формула Бинома Ньютона. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены.

Диофантовы уравнения. Цепные дроби. Теорема Ферма о сумме квадратов.

Суммы и ряды, методы суммирования и признаки сходимости.

Теоремы о приближении действительных чисел рациональными.

Множества на координатной плоскости.

Неравенство Коши-Буняковского, неравенство Йенсена, неравенства о средних.

Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Сравнение бесконечно малых и бесконечно больших. Непрерывность функции. Свойства непрерывных функций. Теорема Вейерштрасса.

Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. *Применение производной в физике*. Производные элементарных функций. Правила дифференцирования.

Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Нахождение экстремумов функций нескольких переменных.

Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла..

Методы решения функциональных уравнений и неравенств.

Геометрия

Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат.

Наглядная стереометрия. Призма, параллелепипед, пирамида, тетраэдр.

Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. *Понятие об аксиоматическом методе*.

Теорема Менелая для тетраэдра. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций.

Скрещивающиеся прямые в пространстве. Угол между ними. *Методы нахождения* расстояний между скрещивающимися прямыми.

Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. *Геометрические места точек в пространстве*.

Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах.

Виды тетраэдров. Ортоцентрический тетраэдр, каркасный тетраэдр, равногранный тетраэдр. Прямоугольный тетраэдр. Медианы и бимедианы тетраэдра.

Достраивание тетраэдра до параллелепипеда.

Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых.

Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы. Трехгранный и многогранный угол. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла.

Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника.

Теорема Эйлера. Правильные многогранники. *Двойственность правильных* многогранников.

Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы.

Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства.

Площади поверхностей многогранников.

Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус).

Усеченная пирамида и усеченный конус.

Элементы сферической геометрии. Конические сечения.

Касательные прямые и плоскости. Вписанные и описанные сферы. *Касающиеся сферы. Комбинации тел вращения*.

Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между векторами. Скалярное произведение.

Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. *Формула расстояния от точки до плоскости*. *Способы задания прямой уравнениями*.

Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс.

Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов.

Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач.

Площадь сферы.

Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса.

Комбинации многогранников и тел вращения.

Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.

Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.

Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.

Вероятность и статистика, логика, теория графов и комбинаторика

Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения.

Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Вероятностное пространство. Аксиомы теории вероятностей.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса.

Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.

Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. *Гипергеометрическое распределение и его свойства*.

Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.

Показательное распределение, его параметры.

Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема.

Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия.

Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция.

Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле.

Кодирование. Двоичная запись.

Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути.

Место предмета в учебном плане

В учебном плане МБОУ Школа № 36 г.о. Самара на изучение предмета математика на на углубленном уровне отводится 7 часов в неделю в течение каждого года обучения. Предмет математика состоит из 2 модулей: «Алгебра и начала анализа» (5 часов) и «Геометрия» (2 часа)

Содержание учебного предмета математика

10 класс

Алгебра и начала анализа (170 часов)

Повторение курса алгебры 7-9 класса (4 часа).

Множества и его элементы. Подмножества. Разность множеств. Дополнение до множества. Числовые множества. Пересечение и объединение множеств.

Основные понятия и законы логики (высказывания; предложения с переменными; символы общности и существования). Принципы конструирования и доказательства теорем (прямая и обратная теоремы; необходимые и достаточные условия; противоположные теоремы).

Делимость чисел (15часов).

Понятие делимости. Делимость суммы и произведения. Деление с остатком. Признаки делимости. Решение уравнений в целых числах.

Многочлены. Алгебраические уравнения (22 часа).

Многочлены от одной переменной. Делимость многочленов. Схема Горнера. Многочлен P(x) и его корень. Теорема Безу. Алгебраические уравнения. Следствия из теоремы Безу. Решение алгебраических уравнений разложением на множители. Делимость многочленов $x^m \pm a^m$ на $x \pm a$. Симметрические многочлены. Многочлены от нескольких переменных. Формулы сокращённого умножения для старших степеней. Бином Ньютона. Системы уравнений.

Степень с действительным показателем (15 часов).

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями, свойства степени с действительным показателем. Преобразование простейших выражений, включающих арифметические операции, а также операцию возведения в степень.

Степенная функция (20 часов).

Степенная функция, её свойства и график. Взаимно-обратные функции. Сложная функция. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.

Показательная функция (14 часов).

Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Логарифмическая функция (20 часов).

Логарифмы. Основное логарифмическое тождество. Свойства логарифмов. Десятичные и натуральные логарифмы, число *е*. Формула перехода. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства. Преобразование простейших выражений, включающих операцию логарифмирования.

Тригонометрические формулы (29 часов).

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса, тангенса, котангенса угла (числа). Знаки синуса, косинуса, тангенса, котангенса. Зависимость между синусом, косинусом, тангенсом и котангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус, тангенс, котангенс углов α и –α. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Сумма и разность синусов. Сумма и разность косинусов. Преобразование простейших тригонометрических выражений.

Тригонометрические уравнения (24 часа)

Уравнение cosx=a. Уравнение sinx=a. Уравнениеtgx=a. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Простейшие тригонометрические неравенства. Системы тригонометрических уравнений.

Повторение (7 часов).

10 класс

Геометрия (68 часов)

Некоторые сведения из планиметрии (12 часов).

Углы и отрезки, связанные с окружностью. Решение треугольников. Теоремы Менелая и Чевы. Эллипс, гипербола и парабола.

Введение (3 часа).

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Параллельность прямых и плоскостей (16 часов).

Параллельные прямые в пространстве. Параллельность трёх прямых. Параллельность прямой и плоскости. Взаимное расположение прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед. Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Перпендикулярность прямых и плоскостей (17 часов).

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Теорема о трёх перпендикулярах. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Расстояние от точки до плоскости, от прямой до плоскости, между параллельными плоскостями, между скрещивающимися прямыми.

Многогранники (14 часов).

Понятие многогранника. Призма. Пирамида. Усечённая пирамида. Правильные многогранники (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр). Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Многогранные углы. Выпуклые многогранники. Теорема Эйлера. Сечения куба, призмы, пирамиды.

Повторение (6 часов).

11 класс

Алгебра и начала анализа (170 часов)

Тригонометрические функции (21 час).

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции $y = \cos x$ и ее график. Свойства функции $y = \sin x$ и ее график. Обратные тригонометрические функции.

Производная и ее геометрический смысл (28 часов).

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Вторая производная. Производные сложной функции и обратной.

Применение производной к исследованию функции (21 час).

Применение производной к исследованию функций и построению графиков.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.

Первообразная и интеграл (18 часов).

Первообразная и интеграл. Правила нахождения первообразных. Понятие об определенном интеграле как площади криволинейной трапеции. Первообразные элементарных функций. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

Комбинаторика (18 часов).

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементы теории вероятностей (15 часов)

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Комплексные числа (19 часов)

Определение комплексных чисел. Сложение, умножение комплексных чисел. Комплексно сопряженные числа. Модуль комплексного числа. Операции вычитания и деления. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригонометрической форме. Формула Муавра. Квадратное уравнение с комплексными неизвестными. Извлечение корня из комплексного числа. Алгебраические уравнения.

Итоговое повторение (30 часов).

Геометрия (68 часов)

Векторы в пространстве (6 часов).

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение

вектора на число. Компланарные векторы.

Метод координат в пространстве (15 часов).

Декартовы координаты в пространстве. Формула расстояния между двумя точками.

Уравнения сферы и плоскости. Формула расстояния от точки до плоскости. Координаты вектора. Скалярное произведение векторов. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Цилиндр, конус и шар (16 часов).

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию. Шар и сфера, их сечения, касательная плоскость к сфере. Уравнение сферы. Формулы площади поверхностей цилиндра и конуса. Формула площади сферы.

Объемы тел (17 часов).

Понятие об объеме тела. Отношение объемов подобных тел. Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы объема шара и площади сферы. Примеры применения интеграла в геометрии.

Итоговое повторение (14 часов).